- g). Use the equation to determine the number of people at
 - (i). 6 tables?
 - (ii). 10 tables? (iii). 25 tables?

$$2+ 2 = P$$

At 6 tables

At 10 tables

At 25 tables

There are 14 people at 6 tables

There are 22 people at 10 tables

There are 52 people at 25 tables

h). What number of tables are needed to seat 30 people?

$$2++2=p$$

$$2+42=30$$

2++2=p 2++2=30 -2+2=2 14 tables are needed to seat 30 people.

- 3. Write an equation for each table below. Verify your answer by substituting values from the table.
- 0 a). 3

1	h	1
۰	_	•
	1	b

0	15-3
f	b)
1	4 1+3
2	7 2 3
3	10 2+3
4	132+3
5	162+3

Equation:

Equation:
$$b = 3x + 1$$

Verify:

Verify:

Examples Continued

4. An airplane is cruising at a height of 9000m. The table below shows the height of the plane every minute after it begins to descend to land.

,00	Time(t) (Minutes)	Height(h) (meters)	
Zero term	→ 0	9000	
	1	8700	
	2	8400	
	3	8100	
	4	7800	

a). Write an equation that relates the height of the plane to the time.

Time, t (Minutes)	Height, h (meters)	The difference decreased by 300
0	9000 ~	>-300
1	8700	-300 - 1 (72m term)
2	8400 <	>-300 >-300 The start point (zero term)
3	8100	>-300
4	7800	is 9000.

Equation:
$$h = -300t + 9000 \frac{OR}{OR}$$
 $h = 9000 - 300t$.

So with the situation with the situation $\frac{15 \text{ minutes?}}{\text{UTime}}$

Plug in
$$h = -300t + 9000$$
 $h = -300(15) + 9000$

The plane is 4500 m
 $h = -4500 + 9000$
 $h = 4500$

The plane is 4500 m
 $h = 4500$

- c). How long after the plane begins its decent does the plane land?
- when the plane lands the height is 0, so find the time when h = 0.

$$-300 t + 9000 = h$$

$$-300 t + 9000 = 0$$

$$300 \times 30 + 9000$$

At 30 minutes the plane will have landed.

- 5. Jiffy Cabs charges a fixed rate of \$3.60 plus \$1.50 per kilometre driven.
- a). Write an expression for the cost of a ride in the cab.

b). Write an equation for the total cost of a cab ride.

c). What is the cost of a 12 km cab ride?

$$C = 3.60 + 18$$

$$C = 21.60$$